Zeyuan Chen

+86 13089855815 | chenzy@stu.pku.edu.cn | Home Page

Education

Peking University

Master of Engineering in Software Engineering, School of Software and Microelectronics

Northwest Minzu University

Bachelor of Science in Biotechnology, School of Life Sciences and Engineering

Publications

Adaptive Visual-Tactile Fusion with Predictive Force Attention for Dexterous Manipulation (Project Page)

Jinzhou Li*, Tianhao Wu*, Jiyao Zhang**, **Zeyuan Chen****, Haotian Jin, Mingdong Wu, Yujun Shen, Yaodong Yang, Hao Dong *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025* **(Under Review)**

Research Experience

Dexterous Grasping in Confined Environment

Research Intern, Supervised by Prof. Hao Dong

• Overview: Extended DexGraspNet to generate dexterous grasps in confined environments, Proposed a diffusion-based hierarchical grasp generation network that first predicts wrist poses globally and then refines joint values based on local point cloud information.

Unified Grasp Representation for Dexterous Hand (In progress)

Research Intern, Supervised by Prof. Hao Dong

• Overview: Generated large-scale grasp pose datasets for multiple dexterous hands, using IBS planes as a unified representation. Proposed a hierarchical architecture to predict wrist poses and voxelized IBS, optimizing final grasps with a tuned energy function for robust grasping.

Adaptive Visual-Tactile Fusion with Predictive Force Attention for Dexterous Manipulation Nov. 2024 – Mar. 2025 Research Intern, Supervised by Prof. Hao Dong

• **Overview:** Proposed a novel **force-guided attention fusion module** to adaptively fuse visual and tactile information, supported by a **self-supervised force prediction module**. Achieved **93% success rate** in 3 real-world contact-rich tasks, demonstrating adaptive attention adjustment across multiple manipulation stages.

General Dexterous Grasping Policy in Cluttered Environment (In progress)

Research Intern, Supervised by Prof. Hao Dong

• Overview: Trained a teacher policy in Isaac Gym for grasping in cluttered environments, distilled it into a vision-based policy, to achieve robust sim2real dynamic dexterous grasping for table-clearing tasks.

Projects

Dexterous Grasp Synthesis from Para-Gripper Grasps (Demo)

Research Intern, Supervised by Prof. Hao Dong

• Overview: Used AnyGrasp to generate para-gripper grasp candidates, mapped them to dexterous hand poses via hand-tuned transformations, and enabled table-clearing through motion planning and heuristic hand closing.

Teleoperation System for Dexterous Hand Retargeting (Demo)

Research Intern, Supervised by Prof. Hao Dong

• Overview: Developed a teleoperation system integrating HaMeR and Intel RealSense D415 for hand tracking, with Dexpilot for retargeting, deployed on Leap Hand for dexterous task data collection.

Sep. 2023 – Present Beijing, China

Sep. 2019 – Jun. 2023 Lanzhou, China

Mar. 2024 – Sep. 2024

Sep. 2024 – Present

Oct. 2024 – Present

hand nosos via

Mar. 2024 – Apr. 2024

Mar. 2024 – Apr. 2024

Internship Experience

PKU-Agibot Joint Lab

Beijing, China

Technical Skills

Jul. 2024 - Present Research Intern

Programming Languages: Python, C/C++Languages: English (CET-6), Mandarin (native)Deep Learning Framework: PyTorchRobotics Frameworks: ROS, Isaac Gym, Isaac SimRobotics Hardware: Shadow Hand, Leap Hand, Inspire Hand, UR10e, Flexiv, Jaka, Realman, Franka, Realsense, Kinect

Awards and ScholarShips

National Scholarship (¥ 8000)

Dec. 2021